Notch signaling is required for the chondrogenic specification of mouse mesencephalic neural crest cells
نویسندگان
چکیده
We examined the roles of Notch signaling in the chondrogenesis of mouse mesencephalic neural crest cells. The present study demonstrated that the activation of Notch signaling or the treatment with fibroblast growth factors (FGFs) promotes the differentiation of proliferative and prehypertrophic chondrocytes expressing collagen type II. Notch activation or FGF2 exposure during the first 24h in culture was critical for the differentiation of proliferative and prehypertrophic chondrocytes. The expression of SOX9, a transcription activator of collagen type II, was also upregulated by Notch activation or FGF2 treatment. The promotion of proliferative and prehypertrophic chondrocyte differentiation by FGF2 was significantly suppressed by the inhibition of Notch signaling using Notch-1 siRNA. These results suggest that FGFs activate Notch signaling and that this activation promotes the chondrogenic specification of mouse mesencephalic neural crest cells. Furthermore, we investigated the expression patterns of Notch-1, SOX9, and p75, which is a marker of undifferentiated neural crest cells, in the mandibular arch where mesencephalic neural crest cells colonize and undergo chondrogenesis. These in vivo observations, coupled with the results of the present in vitro study, suggest that Notch signaling as well as FGFs is a component of epithelial-mesenchymal interactions that promote the chondrogenic specification of mouse mesencephalic neural crest cells.
منابع مشابه
Different downstream pathways for Notch signaling are required for gliogenic and chondrogenic specification of mouse mesencephalic neural crest cells
We examined the roles of Notch signaling and fibroblast growth factors (FGFs) in the gliogenesis of mouse mesencephalic neural crest cells. The present study demonstrated that Notch activation or FGF treatment promotes the differentiation of glia expressing glial fibrillary acidic protein. Notch activation or FGF2 exposure during the first 48 h in culture was critical for glial differentiation....
متن کاملRoles of Ets-1 and p70S6 kinase in chondrogenic and gliogenic specification of mouse mesencephalic neural crest cells
Fibroblast growth factors (FGFs) have been shown to promote the chondrogenic and gliogenic specification of mouse mesencephalic neural crest cells through Notch signaling [Nakanishi, K., Chan, S.Y., Ito, K., 2007. Notch signaling is required for the chondrogenic specification of mouse mesencephalic neural crest cells. Mech. Dev. 124, 190-203; Ijuin, K., Nakanishi, K., Ito, K., 2008. Different d...
متن کاملInteraction between NF-κB signaling and Notch signaling in gliogenesis of mouse mesencephalic neural crest cells
In the present study, we elucidated that nuclear factor-κB (NF-κB) participates in the gliogenic specification of mouse mesencephalic neural crest cells. Whereas transfection of the NF-κB expression vector stimulated gliogenesis, treatment with the dominant negative NF-κB expression vector or NF-κB small interfering RNA suppressed the promotion of gliogenic specification by FGF treatment or Not...
متن کاملGene Expression Profile Analysis during Mouse Tooth Development
Introduction: Complex molecular pathways involve in development of different tissues such as teeth. Differential gene expression patterns during teeth development generates different tooth types. Teeth development results from interactions between oral epithelium and underlying ectomesenchyme cells with neural crest origin. Teeth development are regulated by different signaling networks. In thi...
متن کاملNotch signaling is required for the maintenance of enteric neural crest progenitors.
Notch signaling is involved in neurogenesis, including that of the peripheral nervous system as derived from neural crest cells (NCCs). However, it remains unclear which step is regulated by this signaling. To address this question, we took advantage of the Cre-loxP system to specifically eliminate the protein O-fucosyltransferase 1 (Pofut1) gene, which is a core component of Notch signaling, i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mechanisms of Development
دوره 124 شماره
صفحات -
تاریخ انتشار 2007